Nitrogen mineralization in high elevation forests of the Appalachians. I. Regional patterns in southern spruce-fir forests

RUSSELL H. STRADER¹, DAN BINKLEY^{2,*} & CAROL G. WELLS³

¹²School of Forestry and Environmental Studies, Duke University, Durham, NC 27706, USA; (¹present address: Dept. of Forest Management, Oregon State University, Corvallis, OR 97331); (²present address: Dept. of Forest and Wood Sciences, Colorado State University, Ft. Collins, CO 80523); ³USDA Forest Service, Southeastern Forest Experiment Station, Forest Sciences Laboratory, Research Triangle Park, NC 27709, USA (*requests for offprints)

Key words: Picea rubens, Abies fraseri, acid deposition, forest decline

Abstract. Annual and seasonal rates of net nitrogen mineralization were determined for 19 sites in the spruce-fir forests of the Southern Appalachian Mountains. These sites included high and low elevation stands of red spruce (*Picea rubens* Sarg.) and Fraser fir (*Abies fraseri* (Pursh.) Poir.) on east and west exposures on Whitetop Mountain, Virginia; Mt. Mitchell, North Carolina; and Clingman's Dome in the Great Smoky Mountains National Park. Mineralization rates were determined using in situ soil incubations in PVC tubes with ion exchange resin bags placed in the bottom of the tubes to collect leachate. Throughfall was collected in resin bags placed in the top of the tubes. Average initial NH₄-N + NO₁-N ranged from 0.6 to 4.8 kg N/ha across all plots, and average mineralization rates ranged from 26 to 180 kg-N ha⁻¹ yr⁻¹. Throughfall ranged from 18 to 32 kg-N ha⁻¹ yr⁻¹ with NH₄-N accounting for about two-thirds of the throughfall N across all sites. Throughfall and mineralization rates were not related to elevation or exposure. The high rates of N mineralization and relatively high nitrate concentrations indicate that leaching losses of nitrogen and associated cations could be substantial.

The high-elevation spruce-fir forests of the Southern Appalachian Mountains are the focus of many studies on the effects of atmospheric deposition on forest ecosystems. These forests are experiencing growth declines and mortality from uncertain causes. Several authors have associated this decline with atmospheric deposition of pollutants (Bruck 1985; Bartuska & Medlarz 1986), while others have suggested that the decreases in radial increments may simply reflect normal growth patterns (Zedaker et al. 1987), or may relate to climatic patterns (Johnson & McLaughlin 1986).

Inorganic nitrogen (N) is a major constituent of air pollution and several hypotheses about the effects of atmospheric deposition on forest health depend upon the dynamics of the N cycle. Nitrogen often limits productivity

in forest ecosystems, and inputs of NO₃⁻ and NH₄⁺ may improve forest productivity. Wood & Bormann (1977) reported that in a greenhouse study additions of nitric acid increased foliar N concentrations and stimulated growth of eastern white pine (*Pinus strobus* L.) seedlings. Abrahamsen (1980, cited in Cowling & Dochinger 1980) also concluded that atmospheric N deposition often increases forest productivity due to a fertilization effect. However, where N inputs exceed the nutritional requirement of the forest, the excess N could perhaps cause nutritional imbalance, excessive leaching of other nutrients, and soil acidification (Reuss & Johnson 1986; Binkley et al. 1988). These conditions could alter the physiological status of trees, perhaps leading to growth declines or decreased resistance to other stresses.

Foliar N concentrations, and stand dieback and mortality of North-eastern spruce-fir stands have been reported to increase with elevation (Johnson & Siccama 1983). Friedland et al. (1984) suggested nitrogen-induced winter damage was a possible cause of spruce-fir declines, although they later reported foliar N concentrations were not unusually high (Friedland et al. 1985, 1988). Conditions where excessive N may cause ecosystem instability include large N inputs, low rates of utilization by plants and precipitation greatly in excess of evapotranspiration. High-elevation forests in the Southern Appalachian Mountains exhibit all these conditions.

The objectives of our study were to determine seasonal and annual rates of N-mineralization in soils of the Southern Appalachian spruce-fir region, and to determine if mineralization rates differed by elevation and exposure.

Methods

Our study sites were located on Mt. Mitchell in Yancy County, North Carolina; on Clingman's Dome in the Great Smoky Mountains National Park; and on Whitetop Mountain in Grayson County, Virginia. These mountains exceed 1650 meters in elevation and red spruce (*Picea rubens* Sarg.) and Fraser fir (*Abies freaseri* (Pursh) Poir.) are the dominant tree species. Most red spruce in the South occurs between 1370 and 1870 meters elevation. Fraser fir usually occurs with red spruce between 1525 and 1830 m, and forming almost pure stands above 1830 m (Stupka 1964).

We established 19 plots on these three mountains, as a part of a large research program sponsored by the Spruce-Fir Research Cooperative whose objectives are to determine the effects of pollutant deposition on spruce-fir forests, and to determine the causes of observed growth declines. Plot locations were chosen by elevation and aspect; we expected that atmospheric deposition would increase with elevation (Scherbatskoy & Bliss 1983; Lovett

Table 1. Elevation, aspect, and general stand characteristics of study sites.1

Location	Exposure	Plot No ²	Elev (m)	Asp	Basal spruce (m²/ha	fir	Stand density (#/ha)	Age (yrs)
Clingman's Dome	Low- East	S17 S32 801	1707 1677 1634	E E E	41.7 45.9	0.1 0.0	275 875	200-300 NA
Clingman's Dome	High- Ridge	S05 S06 S16	2006 1982 1957	E N N	15.5 0.8 5.7	16.9 19.2 17.3	425 1450 525	50-260 40-150 90-200
Mt. Mitchell	Low- East	B32 901 902	1680 1686 1671	SE SE S	58.5	0.0	1075	53
Mt. Mitchell	High- East	B34 B35 906	1829 1854 1951	SE SE NE	28.8 19.9	1.2 0.1	2075 1975	40–60 55–65
Mt. Mitchell	High- West	903 904 905	1921 1915 1927	SW SW SW				
Whitetop Mountain	West	R13 R20	1668 1579	NW N	24.8 30.4	0.0 0.0	2025 1400	40–80 75–135
Whitetop Mountain	East	R17 R27	1640 1674	SE E	48.4 53.2	0.0 0.0	7950 4450	24-28 40-50

¹ Information on general stand characteristics provided by: S. Zedaker, N. Nicholas and C. Eggar. Site and stand characteristics of Southern Appalachian spruce/fir project funded by Spruce/Fir Cooperative of US Forest Service. (Unpublished data).

1984), and would be greater on windward (western and northern) exposures. Eleven plots were located adjacent to the permanent plots already established by other cooperators. One plot on Clingman's Dome was also located adjacent to a plot established by Oak Ridge National Laboratory as part of the Electric Power Research Institute's (EPRI's) Integrated Forest Study. The other seven plots were located in spruce or fir stands close to the permanent plots. On Mt. Mitchell we established three plots at each of three exposures: high-west, high-east, and low-east (Table 1). Comparable low-west exposures were not available. On Clingman's Dome, three plots were established on low-east and three on high-ridgeline exposures. On Whitetop Mountain, our most northern site, two plots were on high-west and two on high-east exposures.

Each plot was a 20 meter transect parallel to the contour. Along these

² Plots with number beginning with B, R, or S are adjacent to permanent plots of the Spruce/Fir Cooperative.

Table 2 Average soil	neamorties of tan 10 or	a fram tura aammaaita	samples for each plot
Table 2. Average son	properties of top roci	i irom two composite	samples for each plot

Location	Exposure	Plot No	pН	Loss on Ignition (%)	Total C (%)	N (%)	C:N	Sampl. Pts (%)
Clingman's	Low-	S17	3.8	23	14	0.65	21	85
Dome	East	S32	3.8	24	14	0.58	24	80
		801	4.0	14	8	0.38	22	85
Clingman's	High-	S05	4.0	20	12	0.66	18	85
Dome	Ridge	S06	4.3	16	9	0.50	19	20
		S16	4.3	12	7	0.49	14	55
Mt.	Low-	B32	4.1	29	17	0.62	27	78
Mitchell	East	901	4.2	24	14	0.60	23	18
		902	4.3	24	14	0.61	23	78
Mt.	High-	B34	4.1	49	28	1.05	27	52
Mitchell	East	B35	4.1	38	22	0.96	23	22
		906	4.1	28	16	0.70	23	62
Mt.	High-	903	4.5	29	17	0.78	22	72
Mitchell	West	904	4.2	39	23	0.99	23	88
		905	4.0	39	22	0.92	24	48
Whitetop	West	R13	3.9	49	28	1.18	24	18
Mountain		R20	4.2	21	12	0.58	21	75
Whitetop	East	R17	4.1	24	14	0.63	22	74
Mountain		R27	4.1	31	18	0.74	24	66

transects we installed mineralization cores at approximately two-meter intervals; the precise location was adjusted to avoid rocks and large roots. The mineralization procedure was adapted from DiStefano & Gholz (1986). We collected the top 10 cm of surface material (forest floor and mineral soil) in sharpened PVC tubes 3.8 cm in diameter and 15 cm long. An ion exchange resin bag was placed in the top of each tube to collect throughfall, and another resin bag was placed in the bottom of the tube to trap ions leaching from the soil within the tube. We then reinserted these tubes into the soil creating in situ mineralization cores. It is possible that the bottom resin bag might adsorb ions diffusing from the surrounding soil and overestimate the mineralization in the core. However, earlier work with resin bags showed very little diffusion of ions into the bags; mass flow appeared to be the major vector (Binkley 1984).

Resin bags contained one tablespoon ($14\,\mathrm{mL}$) each of a cation resin ($4.5\,\mathrm{g}$ dry weight) and an anion resin ($4.0\,\mathrm{g}$ dry weight) in a nylon stocking. The cation resin (Dowex 50W-X8 strongly acidic) was obtained loaded with $\mathrm{H^+}$, with a total exchange capacity of $6.3\,\mathrm{mmol_c/g}$ (dry basis). The anion resin

(J.T. Baker strongly basic) was obtained loaded with OH⁻, with a total exchange capacity of $3.2 \,\mathrm{mmol_c/g}$ (dry basis). The resin bags were soaked in $100 \,\mathrm{mL}$ of $2 \,M$ NaCl for $30 \,\mathrm{min}$ and then spun dry. This pretreatment reduced the background (blank) levels of NH₄-N in a $100 \,\mathrm{mL}$ extract of a resin bag from $1 \,\mathrm{mg/L}$ to $0.22 \,\mathrm{mg/L}$, and reduced NO₃-N from $2 \,\mathrm{mg/L}$ to $0.57 \,\mathrm{mg/L}$.

We measured nitrogen mineralization and throughfall over four sequential intervals: November 1985 through April 1986; May 1986 through June 1986; July 1986 through August 1986; and September 1986 through October 1986. Establishment of one high-east plot and three high-west plots on Mt. Mitchell was delayed until May 1986.

At the beginning of each incubation period we collected soil samples at four-meter intervals along the same transect. We used these samples to estimate pre-incubation levels of NH₄-N and NO₃-N. We also measured soil temperature at the beginning of most incubation periods.

Some of our incubation cores were disturbed by animals. The top resin bag was occasionally missing, and a few tubes were pulled from the ground. Overall we had about 20- to 30-percent loss of incubation cores. On one occasion in one plot, all the cores were pulled from the ground and scattered down the hillside (Mt. Mitchell, Plot 34, Period 4).

We estimated rockiness of the transect by inserting a screwdriver 10 cm into the soil at 0.5-meter intervals. If we could insert the screwdriver into the soil the full 10 cm, the point was counted as samplable. We used this estimate of rockiness (percent samplable points), to extrapolate mineralization rates to a hectare basis.

At the end of each incubation period we collected all resin bags and soil cores. We extracted four grams fresh weight of each soil sample with 40 mL of 2 M KCl by shaking the suspension for 30 min; we found that recovery of extractable ammonium was incomplete if we used a lower solution:soil ratio, or more dilute KCl. The suspensions were centrifuged to clarity and then aliquots were pipetted into 4 mL sample vials for NH₄-N and NO₃-N analysis. Initial soil samples were extracted in the same manner. Duplicate samples were extracted for approximately 25% of all soil samples, and concentrations between duplicated were within 10%.

Resin bags were extracted by shaking intact bags in 100 mL of 2M KCl for 1 h. The extract was filtered through lab tissues to remove suspended soil and debris, and stored at 4C prior to colorimetric analysis for NH₄-N and NO₃-N (Scientific a and b). This extraction method did not remove all NH₄-N and NO₃-N from the resins. To determine percent recovery of NH₄-N and NO₃-N from the resin bags, we placed several resin bags in 100 mL of solutions of known concentration (usually 5 mg/L) and shook the

bags for one hour. All ions were absorbed from the solutions. We then extracted these bags and measured the concentration in the extract. Recovery of NH₄-N and NO₃-N was approximately 85% and 75%, respectively. We used the percent recovery factor to adjust the sample concentration values upward to account for incomplete N recovery.

Soil moisture was determined by drying 10 g samples at 105 C.

In November 1986, we collected two composited soil samples from each transect for additional chemical analysis. The pH of each sample was determined in a 1:2 soil/water mixture; loss on ignition by ashing samples at 450 C for 12 h; and total nitrogen using standard Kjeldahl procedures. Percent carbon was estimated as loss on ignition times 0.58.

Nitrogen mineralization was calculated for each core by subtracting the NH₄-N and NO₃-N concentrations in the initial soil samples from the concentrations in the incubated samples and multiplying by total soil dry weight for each core. The amount of NH₄-N and NO₃-N in the bottom resin bags was added to the soil value to give total net mineralization per core.

We used analysis of variance for unbalanced data (SAS Institute, 1985) to evaluate net mineralization, throughfall, percent nitrification, and percent of total mineralization N recovered in the bottom bags. The model tested for exposure effects by comparing plot averages of the cores using core replicates as an interaction variable. We completed this statistical analysis for each period and for the annual sum within each mountain.

Results and discussion

Soil pH of the top 10 cm of forest floor and mineral soil averaged about 4.0 for all sites (Table 2). Total N was less than 1% for most plots, but was marginally greater in one plot on Mt. Mitchell and one plot on Whitetop Mountain. Loss on ignition was variable with a range from 14 to 50%. The mean C:N was 22 with a range from 14 to 27. Soil moisture ranged from about 45% to 65% for all sampling periods in these high-precipitation sites even though some samples were collected immediately following rain and some after more than a week without rain. Soil moisture inside the cores was generally about 5–10% (on a soil weight basis) than in the surrounding soil at the end of the incubation periods. The maximum soil temperature at time of sampling was 17 C in August 1986, and the soils were frozen in winter. Soil temperatures were usually 1–2 C higher at the low elevation plots than at the high elevation plots in both mid-summer and late fall measurements. Soil temperatures at the most northern site, Whitetop Mountain, were also 1–2 C cooler than comparable elevations from the other mountains. The soil

Exposure	Plot	NO3-N	NH4-N	NO ₃ + NH ₄ -N	NO3-N	N-⁴HN	NO³ NH₄-N	NO ₃ ⁺ NH ₄ -N Ka/ha
		mg/kg soil			mg/core			Ng/IIa
Clingman's Dome	ome		Post of the second seco	A STANSFER PROPERTY AND A STAN	delanterentario e como de la como delanterentario del como del com			
Low-	S17	6.9(0.4)	7.5(1.2)	14.4(0.9)	0.21(0.03)	0.23(0.04)	0.44(0.06)	3.3
East	S32	11.2(3.2)	6.2(2.6)	17.4(4.9)	0.24(0.08)	0.13(0.04)	0.36(0.11)	2.5
	801	10.8(2.4)	9.5(2.1)	20.3(3.9)	0.34(0.07)	0.03(0.06)	0.64(0.11)	4 .8
High-	S05	12.8(2.6)	4.5(0.9)	17.3(2.5)	0.44(0.06)	0.15(0.02)	0.59(0.06)	4.4
Ridge	90S	6.1(1.1)	3.6(0.8)	9.7(1.8)	0.22(0.03)	0.13(0.03)	0.35(0.06)	9.0
,	S16	6.1(1.0)	2.7(0.7)	8.8(4.0)	0.28(0.03)	0.12(0.03)	0.40(0.01)	1.9
Mt. Mitchell								
-wor	B32	2.7(0.8)	4.3(1.0)	7.0(1.1)	0.10(0.03)	0.16(0.04)	0.25(0.04)	1.7
East	106	12.4(1.1)	12.9(5.6)	25.3(6.1)	0.45(0.05)	0.49(0.22)	0.94(0.24)	7.3
	905	9.0(0.9)	5.2(1.5)	14.2(0.9)	0.44(0.06)	0.24(0.07)	0.68(0.05)	4.7
ligh-	B34	7.8(1.9)	12.3(3.3)	20.2(3.9)	0.24(0.03)	0.33(0.10)	0.57(0.08)	5.6
East	B35	18.2(2.1)	3.9(0.9)	21.4(1.7)	0.46(0.04)	0.10(0.03)	0.56(0.05)	1.1
	906	10.7(3.3)	7.3(3.9)	18.0(7.1)	0.33(0.10)	0.22(0.12)	0.55(0.21)	3.0
-ligh-	903	7.9(1.8)	8.7(2.8)	16.5(3.6)	0.23(0.05)	0.24(0.07)	0.47(0.07)	3.6
West	904	12.3(1.6)	6.2(2.7)	18.4(4.2)	0.34(0.06)	0.16(0.05)	0.49(0.09)	3.8
	905	7.2(0.6)	5.0(0.7)	12.2(1.2)	0.20(0.03)	0.14(0.03)	0.34(0.06)	4.
Whitetop Mountain	untain							
West	R13	18.6(4.2)	12.9(3.5)	31.1(1.8)	0.31(0.08)	0.19(0.02)	0.50(0.07)	8.0
	R20	11.3(3.2)	6.2(2.4)	17.5(5.6)	0.32(0.07)	0.17(0.05)	0.49(0.13)	3.2
East	R17	7.7(1.3)	9.8(0.8)	17.2(1.4)	0.18(0.05)	0.21(0.05)	0.39(0.09)	2.5
	ניים	13.00.01	13.10.0	24 171 97	0.10/0.00	0.16(0.01)	0.24(0.04)	10

Table 4. Average seasonal and annual throughfall of NH_4 -N and NO_3 -N for each exposure (means and standard errors). Differences between exposures within locations do not differ significantly (at p=0.10) for any period or for the annual totals

Exposure		Nov- April	May- June	July– Aug	Sept- Oct	Year mg/core	Year kg/ha
		μg/core					
Clingman	's Dome					<u> </u>	
Low- East	NH ₄ -N NO ₃ -N Sum	480 (50) 1110(110) 1560(170)	330((40) 90 (20) 420 (60)	670 (40) 300(110) 970 (70)	540(100) 90 (10) 630 (90)	2.02 1.59 3.61	17.8 14.0 31.8
High- Ridge	NH ₄ -N NO ₃ -N Sum	420 (80) 390(100) 780(160)	350 (10) 50 (20) 410 (30)	680(100) 90 (20) 760 (90)	730 (40) 30 (10) 760 (40)	2.18 0.56 2.71	19.2 4.9 24.1
M. Mitch	ell						
Low- East	NH ₄ -N NO ₃ -N Sum	250 (50) 810 (80) 1060(120)	260 (10) 120 (10) 380 (10)	670(100) 220 (40) 890(140)	380 (30) 160 (20) 540 (20)	1.56 1.31 2.84	13.8 11.6 25.4
High- East	NH ₄ -N NO ₃ -N Sum	190 (20) 340 (30) 530 (20)	340 (30) 90 (20) 430 (50)	480 (90) 120 (40) 600 (60)	390(100) 140(100) 530(100)	1.40 0.69 2.09	12.3 6.1 18.4
High- West	NH₄-N NO₃-N Sum	NA NA NA	330(130) 30 (20) 360(110)	620(130) 70 (20) 690(150)	380(220) 20 (10) 400(230)	1.33 ¹ 0.12 ¹ 1.44 ¹	11.7 ¹ 1.1 ¹ 12.8 ¹
Whitetop	Mountain						
West	NH ₄ -N NO ₃ -N Sum	340 (30) 650 (10) 990 (20)	370- 210- 580-	650(180) 320(120) 970(300)	510 (30) 210 (50) 720 (30)	1.87 1.39 3.26	16.5 12.3 28.8
East	NH ₄ -N NO ₃ -N Sum	270(120) 610(320) 880(450)	220 (20) 80 (20) 300 (40)	620 (60) 260(120) 880(180)	640 (20) 160(100) 800 (80)	1.75 1.11 2.86	15.4 9.8 25.2

¹ Sum of only three periods.

temperature was above $0\,\mathrm{C}$ when we collected samples in late October, 1986, and had reached $8\text{--}10\,\mathrm{C}$ in early May, 1986.

The average annual initial levels of NH_4 -N plus NO_3 -N in the soil ranged from 0.25 mg/core to almost 1 mg/core for these sites (Table 3). On an area basis, the initial levels ranged from less than 1 kg/ha of mineral N to about 5 kg/ha of mineral N (Table 3). NO_3 -N usually exceeded NH_4 -N, often by 2-fold and occasionally by 3- to 4-fold.

Throughfall ranged from 18 and $32 \text{ kg NH}_4\text{-N} + \text{NO}_3\text{-N} \text{ ha}^{-1} \text{yr}^{-1}$, (Table 4), which brackets the rate of atmospheric deposition estimated for

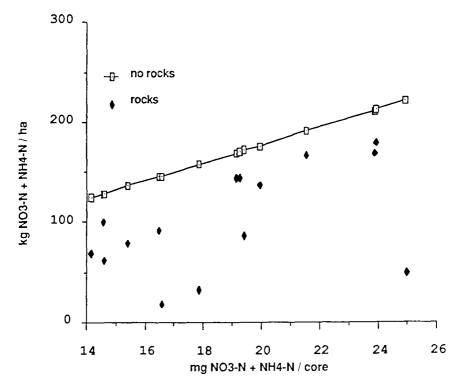


Fig. 1. The effect of rock estimate on the relationship between average mineralization per core and an average mineralization per hectare. The "no rocks" line indicates a 1:1 relationship. "Rocks" points indicate estimates of mineralization reduced by the percent non-samplable points.

the EPRI-IFS site adjacent to one of our plots (G. Lovett, D. Johnson, pers. comm.). Ammonium accounted for over 50% of the total throughfall-N in all plots. In the high-west plot on Mt. Mitchell, NH₄-N accounted for over 90% of the total throughfall. Lovett et al. (1982) estimated atmospheric inputs of various ions in a subalpine balsam fir forest at 1220 meters on Mount Moosilauke, New Hampshire. They estimated input rates of 16 kg NH₄-N ha⁻¹yr⁻¹ and 28 kg NO₃-N ha⁻¹yr⁻¹ for combined cloud deposition and bulk precipitation. Their estimate of ammonium deposition matches our estimate of throughfall ammonium, but their nitrate value exceeds ours. Cloud deposition accounted for approximately 80% of the total input for both sources of N in their study.

Throughfall is a composite of cloud deposition and bulk precipitation minus the stem flow and evaporation from canopy surfaces, plus the net change due to absorption or leaching within the canopy. Lindberg et al. (1986) reported that canopy uptake decreased the flux of atmospheric NO_3^- and NH_4^+ by 50 to 70% during the growing season in an eastern deciduous

Table 5. Average seasonal searched to resin bags (mean	ige seasonal and n bags (means ai	l annual miner nd standard er	alization, avera rors). Within m	ige annual perd Iountains, aver	cent of mineral ages followed b	ization as N by the same l	O ₃ -N, and av	Table 5. Average seasonal and annual mineralization, average annual percent of mineralization as NO ₃ -N, and average percent of mineralized N leached to resin bags (means and standard errors). Within mountains, averages followed by the same letter do not differ significantly (at $p = 0.10$).	nineralized N (at $p = 0.10$).
Exposure	Plot	Nov-	May-	July-	Sept-	Year	Year	Proportion	
		April ug/core	June	Aug	OC		Ng/11a	as NO ₃ -N	Leached into bags
Clingman's Dome	ome							e e commence de la co	
Low-	S17	2.1(0.4)	5.1(0.8)	6.3(0.7)	5.9(0.7)	19.3	145	0.42	0.78
East	S32	5.3(0.8)	9.0(1.0)	5.9(0.7)	3.8(0.8)	24.0	691	09.0	0.82
	801	2.8(0.3)	5.6(0.6)	5.8(1.0)	5.0(0.9)	19.2	144	0.59	0.84
	Average	3.4(0.6)	6.5(0.8)	(8.0)(0.8)	4.9(0.6)	20.8a	152	0.52a	0.81a
High-	S05	2.9(0.5)	7.3(1.4)	5.6(0.4)	8.1(0.8)	24.0	180	0.49	0.82
Ridge	90S	2.1(0.5)	4.3(0.5)	5.1(0.5)	6.3(0.5)	17.8	31	0.45	0.77
)	S16	2.0(0.5)	4.8(0.4)	3.8(0.3)	3.5(0.3)	14.2	69	0.48	0.77
	Average	2.3(0.3)	5.5(0.9)	4.9(0.5)	6.0(1.3)	18.7a	87	0.47a	0.79a
Mt. Mitchell									
Low-	B32	2.8(0.4)	5.6(0.3)	4.6(1.1)	7.0(0.6)	20.0	138	0.25	0.63
East	901	3.2(0.7)	4.7(0.7)	6.7(0.8)	7.0(1.0)	21.6	34	0.29	0.78
	902	1.9(0.3)	3.0(0.5)	4.3(0.7)	5.4(0.9)	14.6	100	0.30	0.75
	Average	2.6(0.4)	4.5(0.8)	5.2(0.7)	6.5(0.6)	18.8a	134	0.27a	0.72a
High-	B34	1.4(0.5)	5.5(0.6)	5.7(0.6)	Z Y	12.6^{2}	585	0.35	0.74
East	B35	2.6(0.7)	6.3(0.5)	8.2(0.7)	8.0(1.0)	25.0	48	0.35	0.73
	906	NA	4.8(0.5)	7.8(1.0)	3.9(0.5)	16.5^{2}	30^{2}	0.20	0.72
	Average	2.0(0.6)	5.5(0.4)	7.2(0.8)	5.9(0.8)	20.6a	82^{2}	0.29a	0.73a

High- West	903 904 905 Average	e e e e X X X X	3.3(0.5) 4.4(0.4) 5.3(0.6) 4.3(0.6)	6.0(0.5) 7.5(0.7) 6.2(0.8) 6.6(0.5)	4.0(0.8) 6.9(0.0) 4.5(0.3) 5.2(0.9)	13.4 ² 18.8 ² 16.0 ² 16.1a	85 ² 146 ² 68 ² 98 ²	0.12 0.01 0.10 0.08b	0.69 0.59 0.50 0.60a
Whitetop Mountain	ountain								
West	R13 R20	1.8(0.3) 2.1(0.3)	4.1(0.4) 5.1(0.6)	6.0(0.6) 5.4(0.4)	4.7(0.3) 6.8(0.4)	16.6 19.4	26 128	0.39	0.85
	Average	1.9(0.2)	4.6(0.5)	5.7(0.3)	5.7(1.0)	18.0a	73	0.51a	0.85a
East	R17	1.3(0.3)	3.1(0.2)	5.3(0.5)	5.7(0.7)	15.4	100	0.34	0.75
	Average	1.0(0.2)	3.0(0.3)	5.5(0.2)	5.4(0.3)	15.0a	93	0.39a	0.81a
Adjusted Sum of or	Adjusted for estimate of ro Sum of only three periods	rocks (% samplable points	ble points)						

forest in Tennessee. Therefore deposition estimates cannot be directly compared to throughfall estimates but they may indicate the relative importance of NO₃⁻ and NH₄⁺ inputs to these high-elevation forest ecosystems.

Sasser & Binkley (1988) reported average throughfall of $6.5 \,\mathrm{kg/ha}$ for NH₄-N + NO₃-N in a Fraser fir regeneration wave on Mt. LeConte in the Great Smoky Mountains National Park from May 1986 to July 1986. They used the same resin core method we used in this study. Our estimate for the same three month period was $7.0 \,\mathrm{kg/ha}$ (Period $2 + 1/2 \,\mathrm{Period}$ 3).

Nitrogen mineralization rates averaged between 14 and 25 mg/core on an annual basis (Table 5) for these 19 plots. Only the two exposures on Whitetop Mountain differed significantly ($p \le 0.10$), and then only for the winter incubation period. Our analysis of variance model did indicate plot differences (at $p \le 0.10$) during some periods, but these plot differences often occurred within the same exposure. The range of values within each exposure was often as large or larger than the range between exposures.

Extrapolations to a hectare scale gave mineralization rates up to 180 kg N/ha. The range in rockiness between plots had a larger effect on this estimate than did the range in rates per core. For example, Plot 35 on Mt. Mitchell had a high rate per core (23 mg/core), but high rock content (78% by our measure) gave a low rate per hectare (46 kg/ha annually). Figure 1 illustrates the effect of our estimate of rockiness on the estimate of N mineralization.

Of the total mineralized N, NO₃-N accounted for approximately 50% on the Clingman's Dome site and 40 to 50% on the Whitetop Mountain site (Table 5). Nitrification was approximately 30% on two east exposures on Mt. Mitchell and the high-west exposure had less than 10% N as NO₃⁻. These differences between exposures were significant ($p \le 0.01$).

Most (75–85%) of the nitrogen mineralized within the cores leached to the bottom resin bag for all plots except the high-west site on Mt. Mitchell (Table 5). This might reduce the amount of mineralized N that is immobilized by microbes, and might provide a higher mineralization estimate than would be obtained from incubations in buried bags (see discussion in Binkley & Hart 1988). However, such leaching is probably more realistic than high accumulation of ammonium and nitrate that would occur in buried bags, so we feel our mineralization estimates should be realistic.

Correlations between soil variables (total N, % carbon, and C:N) and net mineralization and nitrification were poor; the highest r2 was 0.23.

All measurements of net mineralization suffer from a variety of limitations (see Binkley & Hart 1988 for a review). Biases in this resin core method include the effects of freshly killed fine roots, and marginally greater water content in the cores. Freshly killed fine roots could induce immobiliz-

ation if the C:N ratio were high (Popovic 1980), or could stimulate mineralization by providing a readily mineralizable substrate.

We are not aware of other N mineralization estimates for the spruce-fir ecosystems of the Southern Appalachians, but Thorne et al. (1987) have estimated N mineralization in several spruce-fir stands of various ages in the Adirondacks of New York. Using buried bag incubations, they found rates ranged from 18 to 54 kg-N/ha annually, with nitrate accounting for about 1 kg-N/ha annually in all sites. Rates for low-elevation forests in the mid-West and Eastern US have ranged from about 25 to 150 kg-N/ha annually (Nadelhofer et al. 1983; Pastor et al. 1984; Vitousek & Matson 1986; Mladenoff 1987). Our estimates are greater than or equal to the range reported for these other temperate forest ecosystems.

The growth rates of spruce and fir stands in the Southern Appalachians forests are low compared to many other temperate forests, and these probably have relatively low rates of N uptake and accumulation. For example, Sprugel (1984) reported annual uptake of N of about 40–70 kg-N/ ha annually for the above-ground portion of stands of balsam fir (Abies balsamea (L.) Mill.) in New York, with above-ground accumulation rates of 5-30 kg-N/ha annually. Information on belowground N dynamics are not available for eastern spruce-fir stands, but Vogt et al. (1986) report the rate of N turnover in fine roots averaged about 60 kg-N/ha annually in cold, temperate conifer forests. Combining these budgets would give a rough estimate of annual N uptake in our stands of about 100-130 kg-N/ha annually. This is similar to our estimates of net N mineralization, indicating that these forests may be capable of retaining most or all of the mineralized N. However, modest decreases in uptake or increases in mineralization (as might occur in a declining stand) could result in mineralization exceeding uptake, leading to leaching losses of N.

Conclusions

The N content of throughfall was high in these spruce-fir forests, indicating substantial deposition from the atmosphere. The rates of net N mineralization were also high relative to lower-elevation forests in North America, but were probably similar to the rate of N uptake by the vegetation. Our results cannot show whether nitrogen cycling rates contribute to growth decline and mortality in the spruce-fir regions of the southern Appalachians. However, if the rate of N uptake by the vegetation decreased because of declining growth or increasing mortality, the high mineralization rates might lead to substantial leaching losses of N. The balance between N

mineralization, uptake, and leaching needs to be quantified for this type of forest, for both healthy and declining stands.

Acknowledgements

We thank Michelle Strader for help in the field, and Cari Sasser, Sue Bloss, Ute Valentine, and Robin Pursell for laboratory assistance. The comments of H. Van Miegroet and two anonymous reviewers substantially improved the manuscript.

This reserach was funded by the School of Forestry and Environmental Studies at Duke University, and the Spruce-Fir Research Cooperative of the Forest Response Program of the USDA Forest Service and US Environmental Protection Agency. This paper has not received policy review, and does not represent the policies of either agency.

References

Abrahamsen G (1980) Acid precipitation, plant nutrients, and forest growth. In: Drablos D & Tollan A (Eds.) Ecological Impact of Acid Precipitation (pp 58-63)

Bartuska A & Medlarz S (1986) Spruce-fir decline – air pollution related? In: Atmospheric Deposition and Forest Productivity. Proceedings of the Fourth Regional Technical Conference (pp 55-73). Appalachian Society of American Foresters, Raleigh, North Carolina January 29-31, 1986. Society of American Foresters 86-06, Blacksburg

Binkley D (1984) Ion exchange resin bags: factors affecting estimates of nitrogen availability. Soil Science Society of America Journal 48: 1181-1184

Binkley D & Hart S (1988) The components of nitrogen availability assessments in forest soils. Advances in Soil Science (in press)

Binkley D, Driscoll C, Allen HL, Schoeneberger P & McAvoy D (1988) Impacts of Acidic Deposition: Context and Case Studies of Forest Soils in the Southeastern US. Ecological Studies Series, Springer-Verlag, New York (in press)

Bruck RI (1985) Boreal montane ecosystem decline in the Southern Appalachian Mountains: potential role of anthropogenic pollution. In: Stubbs HS (Ed) Air Pollution Effects On Forest Ecosystems (pp 137–155). The Acid Rain Foundation, St. Paul, MN

Cowling EB & Dochinger LS (1980) Effects of acidic precipitation on health and productivity of forest (pp 165-173). USDA. For. Serv. Gen. Tech. Rep. PSW-43

DiStefano JF & Gholz HL (1986) A proposed use of ion resins to measure nitrogen mineralization and nitrification in intact soil cores. Commun. in Soil Sci. Plant Anal. 17(9): 989-998

Friedland A, Gregory R, Karenlampi L & Johnson A (1984) Winter damage to foliage as a factor in red spruce decline. Can. J. For. Res. 14: 963-965

Friedland AJ, Hawley GJ & Gregory RA (1985) Investigations of nitrogen as a possible contribution to red spruce (*Picea rubens* Sarg.) decline. In Proc. Air Pollution effects on Forest Ecosystems. The Acid Rain Foundation, St. Paul, MN. pp 95–106

Friedland A, Hawley G & Gregory R (1988) Red spruce (*Picea rubens* Sarg.) foliar chemistry in Northern Vermont and New York, USA. Plant and Soil 105: 189–193

- Johnson AJ & McLaughlin SB (1986) The nature and timing of deterioration of red spruce in the Northern Appalachian Mountains. In: Acid Deposition Long Term Trends (pp 200-230). National Academy Press, Washington, DC
- Johnson A & Siccama T (1983) Acid deposition and forest decline. Environ. Sci and Tech. 17(7): 294A-305A
- Lindberg SE, Lovett GM, Richter DD & Johnson DW (1986) Atmospheric deposition and canopy interactions of major ions in a forest. Science 231: 141-145
- Lovett GM (1984) Pollutant deposition in mountainous terrain. In: White PS (Ed) The Southern Appalachain spruce-fir ecosystem: its biology and threats (pp 225-231). USDI National Park Service, Research/Resources Management Rep. SER-71
- Lovett GM, Reiners WA & Olson RK (1982) Cloud droplet deposition in subalpine balsam fir forests: hydrological and chemical inputs. Science 218: 1303–1304
- Mladenoff DJ (1987) Dynamics of nitrogen mineralization and nitrification in hemlock and hardwood treefall gaps. Ecology 68(5): 1171-1180
- Nadelhaffer NJ, Aber JD & Melillo JM (1983) Leaf-litter production and soil organic matter dynamics along a nitrogen-availability gradient in Southern Wisconsin. Can. J. For. Res. 13: 12–21
- Pastor J, Aber J, McClaugherty C & Mellilo J (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65: 256–268
- Popovic B (1980) Mineralization of nitrogen in incubated soil samples from an old Scots pine forest. In: Persson T (Ed) Structure and Function of Northern Coniferous Forest an Ecosystem Study. Ecol. Bull. 32: 411-418
- Reuss JO & Johnson DW (1986) Acid deposition and the acidification of soils and waters. Springer-Verlag, New York
- Sasser CL & Binkley D (1988) Nitrogen mineralization in high elevation forests of the Appalachians. II. Patterns with stand development in fir waves. Biogeochemistry (in press)
- Scherbatskoy T & Bliss M (1983) Occurrence of acidic rain and cloud water in high elevation ecosystems in the Green Mountains of Vermont. In: Samson PJ (Ed) The Meterology of Acid Deposition. Transactions of an APCA Speciality Conference. Hartford, Conn
- Scientific a. Ammonia in water and wastewater. Orion Scientific Instruments Corp. Hawthorne, New York
- Scientific b. Nitrate plus nitrite in water and wastewater. Orion Scientific Instruments Corp. Hawthorne, New York
- Sprugel DG (1984) Density, biomass, productivity, and nutrient cycling changes during stand development in wave-regenerated balsam fir forests. Ecol. Mono. 54(2): 165–186
- Stupka A (1964) Trees, Shrubs, and Woody Vines of Great Smoky Mountains National Park. Univ. of Tennessee Press, Knoxville, Tenn
- Thorne J, Friedland A, Miller E & Battler J (1987) Nitrification and nitrogen mineralization in an Adirondack spruce fir serc. Bull. Ecol. Soc. Am. 68: 429
- Vitousek PM and Matson PA (1985) Disturbance, nitrogen availability, and nitrogen losses in an intensively managed loblolly pine plantation. Ecology 66: 1360-1376
- Vogt K, Grier C & Vogt D (1986) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv. Eco. Res. 15: 303-377
- White PS (1984) The Southern Appalachian spruce-fir ecosystem, an introduction. In: White PS (Ed) The Southern Appalachian spruce-fir ecosystem: Its biology and threats (pp 1-21) USDI National Park Service, Research/Resources Management Rep. SER-71
- Wood T, Bormann FH (1977) Short-term effects of a simulated acid rain upon the growth and nutrient relations of *Pinus strobus*. Water, Air, and Soil Poll. 4: 479–488
- Zedaker SM, Hyink DM & Smith DW 91987) Growth declines in red spruce. J. For. 85(1): 34-36